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Abstract. Application of gauge transformation for generating explicit auto-Backlund rela- 
tions is demonstrated for a number of integrable systems, e.g. K d v ,  SG, NLS, DNLS, mixed 
DNLS, modified DNLS, LLE,  etc. This method turns out to be much simpler, effective and 
straightforward. Using Backlund relations all conserved quantities are expressed in a novel 
derivative-free form, which simplifies the calculation of important soliton characteristics. 

1. Introduction 

The importance of gauge transformation (GT) for connecting various non-linear systems 
is stressed in a number of publications [l-41. In a series of papers [5-71 we also 
demonstrated the role of GT in generating new integrable systems and establishing the 
Backlund transformation ( BT) between solutions of different non-linear equations. In 
this paper we aim to complement our previous work by extending the applicability of 
GT for deriving explicit auto-eT, i.e. for finding the relation between different solutions 
of the same equation. Though the general formulation of this idea is already available 
[%lo], application of this elegant approach to various systems of physical interest has 
not been demonstrated. We apply this method to find the explicit auto-Backlund 
relation (ABR) for different non-linear systems such as Kdv, sine-Gordon (sG), the 
non-linear Schrodinger equation ( NLS), derivative NLS ( DNLS), the Landau-Lifshitz 
equation (LLE), etc. The ABR for a modified DNLS, which Boiti et a1 [ l l ]  had failed 
to discover, is found by us through some extension of this method. The A B R  of mixed 
DNLS is also obtained similarly in a simple way. Using the BT, the order of derivatives 
connected with soliton solutions is lowered, which helps to rewrite all the conservation 
laws of integrable systems in a novel manner. These expressions become rather 
fascinating for a one-soliton solution and easily yield soliton momentum, energy and 
other integral characteristics in explicit form. 

2. Examples of the explicit auto-Backlund relation through CT 

Let the linear system corresponding to a non-linear equation i q  = 0 with solution q 
take the form 

* x , ( x i ,  A ) =  Ui(& q ) * ( x i ,  A )  i = O ,  1 (2.1) 
then the respective linear system for a different solution may be given by a gauge 
transformation of (2.1) as 

(2.2) * ' ( X i ,  A )  = G(q, q', A ) * ( X i ,  A 1 
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1108 A Kundu 

which connects separate solutions q, q' of the same non-linear equation 

{ U I . , - U ~ , , + [ U I ,  U O I } I ~ = ~  = G I U I . ~ - U ~ , , + [ U ~ ,  Uo]}G-l=O (2.3) 
in the implicit relation 

G , ( q ,  q ' ,  A 1 = U , ( q ' ,  A ) G ( q ,  q',  A )  - G ( q ,  q',  A 1 A ) .  (2.4) 

For finding the explicit Backlund transformation for concrete examples, suppose 

and rewrite (2.4) for the matrix elements: 

ay, = CY ( A :  - A , )  + y B :  - PC, 

P x ,  = P(A:+  A , )  + 6Bi - a B ,  

yy, = - y ( A : + A , ) +  aC:-  6C, 

6, = -6 (A:  - A , ) + p C :  - a B ,  

where A: = A,14=4, B:  = BI,=,., etc, and a, P, y, 6 are in general functions of q, q' and 
A. We will be interested in auto-sr  between N and N + 1 solitons in different integrable 
systems. The N-soliton corresponds to the appearance of the N-pole in the penetration 
coefficient of the scattering matrix. Hence, to get the ( N i l ) - s o l i t o n  solution from 
the N-soliton solution one has to 'add' another pole, which is achieved by the GT (2.1) 
through a spectral-parameter-dependent gauge matrix G. Dependence of G on A is 
determined easily by the particular structure of the spectral matrix U , .  In particular, 
we may express a =Z,,=O (cr,/(ih)"), P =C,"=, (pn/(iA)"),  etc, and from (2.6) choose 
N by matching coefficients of equal powers in (ih)" to get a consistent closed set of 
equations for an, Pn, y, and 6,. The value of N and explicit solutions would depend 
on a particular form of U1 . 

N 

2.1. ET for  A K N S  system 

For A K N S  [I21 spectral problem we have 

A,  = i A  B , = q  C, = r (2.7) 

which specifies N = 1 and yields P I  = y ,  = a l x  = =0,  leading to the simple ansatz 

a = a,+ 2iA P = P o  Y = Yo 6 = So- 2iA (2.8) 
where cyo, Po,  yo ,  6o are independent of A. Now, putting (2.7) and (2.8) in relation 
(2.6) for i = 1 and comparing coefficients of equal powers of A we obtain 

Po=q+q '  P o ,  = q'& - P o  yo=  r + r '  

cyo, = (q ' r '  - qr)  So=cro+e  

with e as a constant of integration, leading to the relation 

(y u = u  -I , , e ( u + v )  

cyox = f[r'( U + v )  - r ( u  -U)] 

(2.9) 

(2.10a) 

(2.106) 

where U = q'+ q and U = q ' -  q (2.10~2, b )  represent the space part of BT for the A K N S  

system, which reduces to an explicit form for different integrable equations with 
different choices of q and r. 
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2.1.1. s ~ f o r  Kdvequation. The choice of r = -1, q = -w, in (2.7) gives the K d v  equation 

W ,  + w,,, - 3 w Z ,  = 0. 
Introducing U’= w‘+ w, v’= w‘-  w and assuming a,= ao(t?) one gets from (2.10b) 
a”, = ab;, = fir or ao= U’ and consequently, from (2.10a), 

U’x =tij2+few‘-2772 (2.1 1) 
where 77 is a constant of integration. Equation (2.1 1) yields for the choice of e = 0 the 
conventional form of ABT 

(2.12) 

To find the time ABT, insert G with (2.8) in (2.6) with i = 0. Using U,  for Kdv [ 131 
one gets the equation 

w, + w: = f( w’- w) ’  -277?. 

a 0 1  = -4 4: - q,) - Yo( 41% + W2) - 2qPo 
which, with the use of the obtained solutions, 

( Y o =  so= ( w ’ -  w )  P O = - ( W : + W , )  yo= -2 (2.13) 
reduces immediately to the time BT 

w: - w ,  = -4$q -2qk( w’- w )  + q’( w‘- w)’+2(q:,+ 2q’Z). (2.14) 

2.1.2. ET for SG equation. For r = -q = px the A K N S  system (2.7) reduces to the SG 

equation 2qY1 = sin 2p. Assuming a,  = a,(;) and e = 0 as before, (2.104 b )  gives 
ab= -U’% and &a0= fix,, respectively, which leads for ao=f’  to 

f = U ’  =-f’ (2.15) 
orf’+f= 0, yielding a solutionf = 277 sin t ? o r a o  = 277 cos 6. This solution gives directly 
from (2.15) the required space BT: 

cp:+px =277 s in (p ’ -9 ) .  (2.16) 
With the obtained solution for G: 

a0 = 2 77 cos( p’ - ‘0) = so P o = - ( ~ o : + ~ ~ ) = - Y o  

and known U,  for SG [13], it is now easy to extract the time BT from the equation 
a”, = ;(cos 2 p  -cos 2p‘)  in the form 

p:-po,=(1/277)sin((o‘+cp). (2.17) 

2.1.3.  for N L S  equation. The reduction of A K N S  with r = ~ q * ,  E = r l  yields the N L S  

equation iq, + q,, - E1qI2q = 0, which leads (2.10) to 

a, = ; E (  uu* + v u * )  /&=o (2.18) 
where ao= a + 2 i ~ .  Assuming a = a(lu12) only and choosing the constant c = -4iw we 
obtain from ( 2 . 1 0 ~ )  and  (2.18) (a’)‘= E, yielding the solution a = - (4u ’+  E ~ U / ~ ) ’ / ~ ,  

where 4 u 2  is the integration constant. ( 2 . 1 0 ~ )  reduces now to U, = a 0 u - 2 i p ( u + u ) ,  
which leads to the space BT: 

(2.19) qk+ qx = -2ip(q’+ q )  - (q ’ -  q)(4v2+ Elq‘+ q12)”2. 
Therefore, the gauge G is given by (2.8) with 

~ , = ~ ~ ~ - ( ~ V ’ + E I U I ~ ) I  ? = a , *  
(2.20) P o =  q ‘ + q =  -yo* 
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which gives with the known [ 131 time evolution operator U, for NLS the explicit time 

i(q:+ q f )  = E(q’+ q)(1q’I2+1qI2)+(q:- qx)(4y2+ ~lq’+q”) ‘ ’~+2ip(q :+  q,). (2.21) 

BT: 

2.2. BT for Kaup- Newell problem: DNLS equation 

The Kaup and Newell [14] spectral problem is given by 

A,  = -ih2 B1 = hq C, = hr (2.22) 

which through (2.6) dictates N = 2 and gives aox = aOx = a, = S 1 -  - P o-P2=Yo=Y2=0 - 
allowing the choice 

Q = 1 + a2A2 P = P , h  Y = Ylh S = - l + S 2 h 2  (2.23) 

a 2 ,  S2,  P I ,  y1 being independent of A. Repeating a similar procedure to the above, 
we get, from (2.23) and (2.6), the relation 

p --I’ 
P l x  = - (q ’+  9 )  I - 249‘62 - qa2) 

a 2 x  = f a 2  82x = -fa, 
where f = $ ( q ’ r ’ -  qr ) .  Equation (2.24) may be reduced further to 

(2.24) 

i(q:S2-q,a2) = -2(q’+q)+~i f (q’~ ,+qa , ) .  (2.25) 

For the DNLS equation 

iqf+qxx-iE(lq12q)x = o  (2.26) 

we need the reduction r = eq*, E = *l, which yields from (2.25) the space part of BT 
for the DNLS: 

(2.27) 

where a = p exp[i(p’+ - p + ) ] ,  p+ = S E  j:m 1qI2 dx and p = -4A2 eie. One may also derive 
a one-soliton solution directly from (2.27) by setting q = 0: 

i(q:a* - q,a) = -2(q‘+ q )  - f e ( q ’ a * +  qa)(1q’12-lq12) 

iq, =2qp e- i f i++felq)2q 

which after intergrating once gives the one-soliton solution 

{exp[(27 -Zi()x-ip+]} 
exp 477x + exp( *iy) 

q = f4A sin y (2.28) 

for E = -1 and with II = A2 sin y, 5 = T A 2  cos y. The time part of ET may also be found 
as before. 

2.3. BT of the mixed DNLS equation 

Mixed DNLS, which is a hybrid of the DNLS and NLS equation, given by [15], 

i Qf + o x x  - 4 I QI2Q - i E a  (I Qt2Q)x = 0 (2.29) 
corresponds to a choice A,  = i[-ah2+(2P)1’2h], B, = ( a h  -m)Q and C, = -&BT. 
The above procedure may also be repeated here, but this leads to severe complications. 
However, it is interesting to notice that a simple gauge transformation 

qD = a1’2Q exp[-fiu(x-~ut)]  (2.30) 

E = 71, a > 0, p > 0 
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with U = 2 p / a  and a Galilean transformation x' = x - ut, t ' =  t maps the mixed DNLS 

solution Q to the DNLS solution 40. A direct substitution of (2.30) shows clearly that, 
if Q is a solution of (2.29), qD must be a solution of (2.26). Therefore, ABT (2.27) of 
DNLS leads readily to a auto-Backlund transformation of mixed DNLS for the simple 
change of variables (2.30). 

2.4. BT of W K I  problem: modified DNLS equation 

The Wadati-Konno-Ichikawa [ 161 spectral problem may be given by U, with 

A,  = -ih B1 = A i j  C ,  = A i  (2.31) 

which for the choice r'= -i* yields the modified DNLS 

(2.32) 

However, this slight modification of spectral structure forbids one to use directly the 
GT method discussed above and this is the cause of the failure of an earlier attempt 
[ 113 to find the BT for such systems. We, however, overcome this difficulty by extending 
the GT through the Landau-Lifshitz equation ( L L E ) .  For this we first found BT for the 
LLE 

s, =YES, 1 S x x l  s2=u S = S * a .  (2.33) 21 

It is known [ l ]  that the LLE may be gauge generated from NLS through the transforma- 
tion (D=Y,'Y where (D, Y are Jost functions corresponding to the LLE and NLS, 

respectively, and Yo = Y ( A  = 0). Therefore, for a different solution S' of LLE we have 

@'=Yh-'q'= Yi1G;'GY = B(D 

where B = Y i 1 G i ' G Y 0  and Go= G(A = 0), i.e. B is the BT gauge of the LLE,  while G 
is that of the NLS. Using the structure (2.8) for G we obtain 

B = U + 2ihB1 B, = Yi1Gi la3Y0  (2.34) 

and Go is given by (2.20). From the relation (2.4) for gauge where Yi1a3Yo = S = S - 
matrix B with 

U, = iAS U, = 2iA2S+ 2ASSx 

one obtains the ABT between different solutions S' and S of the LLE in the form 

sf = B,SB;' (2.35a) 

as the space part and 

i B,, = ( S ' S :  - SS,) (2.35b) 

as the time part. Now, for finding the explicit relation, one has to express B given by 
(2.34) as a function of S and S' by noting 

IpI2= constant(1- s3)-', arg p = e/2 (2.36) 
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and 

with the relation 

(2.38) 

Here S takes values in a manifold: S E  SU(2). We may, however, get another integrable 
equation 

io, = ( I  --IQI~)”~Q,,-Q(~ - - \ Q I ’ ) % ~  (2.39) 

from (2.33) defined in a vector space, by a change of variable 
Q = S  Q* = S‘ s3 = p E ( 1  - I Q I ’ ) ” ’ .  (2.40) 

The corresponding ABT may be obtained clearly from (2.35) by the substitution of (2.40). 
We are now in a position to derive the ABT of the modified DNLS (2.32). It is 

remarkable that a change of dependent as well as independent variables [4] given by 

i 4 = Q / P  .=-I P dx P = (1 - 1 Q 1 2 ) ” 2  (2.41) 

transforms (2.39) to (2.32). Therefore, using 

one gets from (2.35) the Backlund transformation for (2.32) in the form 

as the space part and 

as the time part, where I?, = g-‘G;’u3g with 

- 
iB,, = ( M ’ M :  - MM,)  

and Go is given by (2.37) with 

(2.42) 

(2.43) 

3. Expressions of conservation laws without derivative terms 

It is well known [ 171 that the function r = YJY I expressed through the Jost function 
Y = (z;)  reduces the spectral problem for the AKNS system, i.e. (2.1) with i = 1, to a 
Ricatti equation 

m-1  oi 

2ir,+, = (r,, ,)x+ir r,,,& r =  C r , P  (3.1) 
i = l  m = l  
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with the solutions 

The gauge transformation (2.2) changes r to 

r '= ( a r + p ) / ( y r + S )  

which gives the space BT between I'l and T i  in the form 

(3.3) 

m-1  

2 i ( r ~ c I + r , ~ l ) - ( ~ o ~ ~ - ~ o ~ , ) - ~ o  1 rT,-, = O  (3.4) 
, = I  

with r; + I-, =$ip0. Now, let ri correspond to a N-soliton solution, then repeated use 
of (3.4) yields a reduction of higher-order terms through lower orders as 

riN) with higher index m, as seen from (3.1), contains higher derivative terms. There- 
fore, repeated use of (3.5) would reduce the expression for conserved quantities (for 
the N-soliton) 

a 

I i N )  =$Re r(N)r!,N) d x  m = 1,2 ,3 ,  . . . (3.6) 

to a derivative-free form, though containing contributions from all solitonic modes 
M = 1 , 2 , .  . , , N. For the one-soliton solution (since r',"'= 0) this expression takes a 
simple interesting form 

(3.7) 

where rl = -iq for the AKNS systems. In the case of the NLS equation using (2.20), 
one gets a derivative-free expression for conservation laws of the one-soliton solution 
qs as 

D 

I,,, =;Re I -K /qSl2{ p+$4~'- jq , jZ) ' /~  } d x  

which yields momentum and energy expressions with m = 2 and m = 3, respectively 

(3.9a) 

(3.96) 

and reduces for the explicit soliton solution (qi12 =4v2  sech2 2v(x  - ut) immediately to 

P =  - - 2 w ~ =  NU H =$43$- v2)= -fN3+:NU2 (3.10) 
where N = Y is interpreted as the soliton 'mass' and U = -2p as the soliton 'velocity'. 
This shows consequently Nu as 'momentum', $Nu2 as 'kinetic' and -3N3  as 'rest' 
energies. Note that (3.10) reproduces in a simple way the known results [ 131 through 
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action-angle variables. In a similar manner, we may deduce derivative-free expressions 
of conserved quantities for soliton solutions to the Kdv, modified Kdv, DNS, etc, 
equations. For example, in the case of Kdv given by r = -1, q = - w x ,  the soliton energy 
may be expressed as H = w2q dx. 

4. Conclusion 

Gauge transformation is applied to extract the explicit auto-Backlund relation connect- 
ing different solutions of some well known non-linear equations, e.g. Kdv, s ~ ,  NLS, 

DNLS, LLE,  etc. The use of c’r  for linking different systems helps to find ABT for mixed 
DNLS and also for a modified DNLS, where an earlier attempt failed. Though many of 
the relations found here have been obtained previously by various other methods 
[18-211, the present approach demonstrates elegantly how the GT works in a rather 
straightforward way and, compared to standard tricks for obtaining ABT, it is much 
simpler and free from any ‘guesswork’. Along with the BT between solutions, we also 
find the BT between Jost functions, which helps in lowering the order of derivative 
terms connected with the N-soliton solution. This in turn rewrites expressions for 
infinite conserved quantities including momentum, energy, etc, of a soliton in a novel 
derivative-free form which, apart from its own appeal, also simplifies the explicit 
calculations. It is hoped that this GT method would also ‘work’ successfully in other 
systems not covered here. 
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